
The Higgs-Gluon Vertex:
A HEPMath Tutorial

Martin Wiebusch∗

Institute for Particle Physics Phenomenology, Department of Physics, Durham
University, Durham CH1 3LE, United Kingdom

Abstract

This tutorial demonstrates the main features of the HEPMath package, using
Higgs production through gluon fusion and Higgs decays into gluons (at leading
order in the SM) as illustrative examples.

∗email: martin.wiebusch@durham.ac.uk



1 Introduction

Even for simple processes in High Energy Physics (HEP) the computation of cross
sections and decay widths can involve rather large intermediate expressions. As a re-
sult, computer algebra systems are indispensible in HEP, and there are several software
packages [1–4] which aim to fully or partially automate different types of analytic cal-
culations. This tutorial describes a rather recent addition to the list: the Mathematica
package HEPMath [5]. Here are a few reasons why you might want to use HEPMath:

• You do most of your work in Mathematica and don’t want to switch to another
programming environment like FORM for your HEP-related calculations. HEP-
Math seamlessly integrates common HEP notations like tensors, SU(3) generators,
Lorentz vectors, Dirac matrices, index contractions etc. in Mathematica. It can
handle Feynman amplitudes generated with FeynArts [6], and you can evaluate
one-loop tensor integrals and parton distribution functions numerically via the
LoopTools [3] and LHAPDF [7] interfaces, respecitvely. So no more messy and
complicated tool chains. Just do everything in Mathematica.

• Your calculation doesn’t fit any of the computational schemes implemented by
other tools (e.g. FormCalc). HEPMath gives you all the functions you need to
manipulate (i.e. expand, contract, factor, trace, differentiate, integrate etc.) ex-
pressions involving HEP notations, but you decide how and in which order these
functions are applied. HEPMath is a tool box, not a black box.

• The analytic result of your calculation is some lengthy expression and you want to
do some number crunching with it in Python. (Maybe you need to run parallel jobs
on a cluster and don’t have enough Mathematica licenses.) HEPMath comes with
an extremely flexible C code generation mechanism based on Mathematica’s byte-
code compiler, and it automatically generates Python extension modules which
let you call your compiled functions from Python. Life’s too short to write C or
FORTRAN code by hand, don’t you think?

This tutorial introduces you to the main functionality of HEPMath using the Hgg
vertex (at leading order in the SM) as an example. You will learn how to compute
Feynman amplitudes analytically, how to use the FeynArts, LoopTools and LHAPDF
interfaces, and how to export your results to Python. Sec. 2 explains the basics of the
HEPMath system. In Sec. 3 we use the FeynArts interface and the analytic capabilities
of HEPMath to compute the partial H → gg width in the infinite top mass limit. In
Sec. 4 we use the LoopTools and LHAPDF interfaces to evaluate the H → gg partial
width and the gg → H production cross section numerically for finite top and bottom
masses. This section also shows how to export the results to Python.

1



2 Basics: Tensors, Indices, and Contractions

Like any other Mathematica package, HEPMath can be added to a Mathematica session
by loading the appropriate context:

Needs["HEPMath‘"]

The central part of the HEPMath system is the integration of tensors and symbolic
indices in the Mathematica language. In HEPMath every expression has a tensor sig-
nature which can be determined with the HEPTensorSignature function. Anything that
is not a tensor has the tensor signature {} (an empty list). HEPTools comes with a
handfull of pre-defined tensor symbols which represent Dirac matrices, the Minkowski or
the Levi-Civita tensor. They are listed in Tab. 1. The tensor signatures of these symbols
(given in the second column of the table) are non-empty lists of index types. HEPMath
defines seven index types: Lorentz, Dirac, FermionHelicity, VectorPolarization,
MassiveVectorPolarization, ColorFundamental, and ColorAdjoint. The names
should be self-explaining. More index types can be defined by the user, but for this
tutorial the pre-defined ones are sufficient.

Exercise 1. Determine the tensor signature of the following expressions: Ga,
Ga[mu], Ga[mu, al], Ga[mu, al, bt], Ga[mu][al], ColorT[a], a (PL + b PR), (PL
+ PR)[al], Ga + PL.

As you see, you can attach indices to a tensor by applying the tensor to the index list
(i.e. by putting the indices in square brackets behind the tensor). The more indices you
give explicitely the shorter the tensor signature becomes, and the indices are “eaten”
from the left. The tensor can be a symbol or some linear combination of tensors with the
same tensor signature. If you try to combine tensors with different tensor signatures,
like in the last case, HEPTensorSignature gives you an error.

You can declare your own tensor symbols with the DeclareHEPTensor function (de-
scribed in Section 5 of the manual). The most common use case is declaring polarisation
vectors or momenta appearing in a Feynman amplitude. There are a few a shorthands
for this case:

DeclareLorentzVectors[p, q]

declares two Lorentz vectors p and q. You can also give a pattern to
DeclareLorentzVectors:

DeclareLorentzVectors[_k]

2



Table 1: Pre-defined tensors and tensor-valued functions.

Symbol Tensor signature Description
Ga {Lorentz, Dirac, Dirac} The Dirac matrix γµ.
GI {Dirac, Dirac} The identity matrix 1.
G5 {Dirac, Dirac} The matrix γ5.
PL {Dirac, Dirac} (1− γ5)/2.
PR {Dirac, Dirac} (1 + γ5)/2.
Gs[p]a {Dirac, Dirac} The contraction γµpµ ≡ /p.
GSig {Lorentz, Lorentz,

Dirac, Dirac}
The matrix σµν = i

2(γµγν − γνγµ).

USp[p]a {FermionHelicity, Dirac} The Dirac spinor u(p).
VSp[p]a {FermionHelicity, Dirac} The Dirac spinor v(p).
Pol[p]a {VectorPolarization,

Lorentz}
The massless polarisation vector
εµ(p).

MPol[p]a {MassiveVectorPolarization,
Lorentz}

The massive polarisation vector
εµ(p).

Dim {} Symbol representing the dimension
of Minkowski space.

Eta {Lorentz, Lorentz} The metric tensor ηµν ≡ gµν in Dim
dimensions with “mostly minus”
signature.

EtaHat {Lorentz, Lorentz} The (Dim− 4)-dimensional part of
the metric tensor.

Eps {Lorentz, Lorentz,
Lorentz, Lorentz}

The Levi-Civita tensor εµνρσ.

Den[p, m]a {} The propagator denominator
1/(p2 −m2).

ColorT {ColorAdjoint,
ColorFundamental,
ColorFundamental}

The SU(3) generator T a.

ColorF {ColorAdjoint,
ColorAdjoint,
ColorAdjoint}

The SU(3) structure constants fabc.

ColorDelta {ColorFundamental,
ColorFundamental}

The identity matrix for colour
indices.

GluonDelta {ColorAdjoint,
ColorAdjoint}

The identity matrix for adjoint
colour indices.

a p must be an expression with tensor signature {Lorentz}.

3



makes anything of the form k[something] a Lorentz vector.

If a tensor index appears twice in a product it is contracted (i.e. implicitly summed
over). If it appears only once it is free. The Indices function analyses the index
structure of an expression and returns a summary of the free and contracted indices:

Indices[p[mu] Ga[mu, al, bt]]
⇒ {{al -> Dirac, bt -> Dirac}, {mu -> Lorentz}}

The first list holds the free indices and the second the contracted indices. Note how the
index type is inferred from the position in the index list.

Exercise 2. Declare Lorentz vectors p and k and apply Indices to the following ex-
pressions:

• Eps[mu, nu, ro, sg] p[ro] k[sg]

• p[mu] Ga[mu, al, bt] + p[nu] Ga[nu, al, bt]

• p[mu] Ga[mu, al, bt] + PL[al, bt]

• p[mu] Ga[mu, al, bt] + PL[al, al]

• ColorF[a, b, c] ColorT[a, i, j] ColorT[b, j, i]

• p[mu] Ga[nu, mu, bt]

• p[mu] Ga[mu, mu, mu]

As you see in the fourth example terms of a sum must have the same set of free
indices. The last two cases show you that HEPMath only lets you contract indices
of the same type and each index is only allowed to appear twice in a product. This
can be a problem when you want to multiply two expressions like p[mu] q[mu] and
k[mu] l[mu] which use the same name for a contracted index. HEPMath provides the
function HEPMultiply for these situations. It takes an arbitrary number of arguments
and returns their product, replacing contracted indices by unique symbols if necessary.
Try evaluating HEPMultiply[p[mu] q[mu], k[mu] l[mu]].

In some cases, e.g. for long products of matrices, it is obvious how the indices need
to be contracted and rather tedious to come up with enough index names. HEPMath
lets you use Mathematica’s Dot (‘.’) operator to denote “obvious” contractions between
tensors without explicit indices.

HEPTensorSignature[Ga[mu].Ga[nu]]
⇒ {Dirac, Dirac}

4



The Dot operator can be used whenever the contracted tensors have at most two indices
of the same type. To write all contractions in an expression with explicit indices you
can use the ExplicitIndices function:

ExplicitIndices[(Ga[mu].Ga[nu])[al,bt]]
⇒ Ga[mu, al, $3] Ga[nu, $3, bt]

The symbols that ExplicitIndices introduces for contracted indices are generated
with Mathematica’s Unique function and therefore guaranteed to be unique. Note that
ExplicitIndices only works on scalar expressions (i.e. on expressions with tensor
signature {}).

Exercise 3. Declare Lorentz vectors p, q, k, and l. Determine the tensor signature of
the following expressions:

• (Gs[p] + m GI).Ga[mu].PL

• p.Eps[mu, nu].q

• ColorT[a].ColorT[b]

• Ga.Ga

• Eta.p.q

• Eps.p.q.k.l

Then use ExplicitIndices to find out how the indices are contracted in these expres-
sions. (You will have to add indices to those expressions whose tensor signature is not
{}.) Are the results what you would have expected?

When more than one index type is involved the “Dot notation” is not unique. For
example, PL.p.k and p.PL.k represent the same expression. For this reason there is
no “inverse” of the ExplicitIndices function in HEPMath. However, you can remove
appearences of identity tensors such as Eta or GI with the HEPContract function. In
addition there are the functions LorentzContract and DiracContract which perform
some additional simplifications on expressions with contracted Lorentz or Dirac indices,
respectively. The function ColorReduce can be used to eliminate SU(3) structure con-
stants and contractions between the adjoint indices of SU(3) generators.

Exercise 4. Declare Lorentz vectors p and k. Apply the functions HEPContract,
LorentzContract, DiracContract, and (where applicable) ColorReduce to the fol-
lowing expressions:

• Eta[mu, nu] p[mu] k[nu] + Eta[mu, mu]

5



• p[mu]ˆ2 k[nu]ˆ2

• p[mu] Ga[nu, al, ga] GI[ga, bt] Eta[mu, nu]

• (ColorT[a].ColorT[b])[i, j] ColorF[a, b, c]

• ColorF[a, b, c]ˆ2

• Ga[mu, al, bt] PL[bt, ga] Ga[nu, ga, al]

• Eps[mu, nu, ro, sg] p[ro] k[sg]

As you see from the first expression, the dimension of Minkowski space is represented
by the symbol Dim in HEPMath. The SDot and Sqr symbols are mostly used to denote
scalar products and squares of Lorentz vectors, respectively. They are, however, slightly
more general: SDot can be used to denotes the full contraction of two tensors with
the same tensor signature, and Sqr denotes the full contraction of a tensor with itself.
Try, for example, applying ExplicitIndices to SDot[PL, PR] and Sqr[Ga]. Note that
SDot has the attribute Orderless, so that its arguments are sorted automatically and
their order is irrelevant for the purpose of pattern matching. Also note that SDot[p,
p] automatically simplifies to Sqr[p].

As you may have guessed, DiracTr denotes the trace of a Dirac matrix. HEPMath
uses the algorithms from the TRACER package to evaluate traces over Dirac matrices.
The function CalcDiracTraces computes all occurrences of DiracTr in its argument.
The γ5 matrix is handled the same way as in TRACER, i.e. by letting the 4-dimensional
part of γµ anti-commute and the (D − 4)-dimensional part commute with γ5. To use a
fully anti-commuting γ5 you can set the option AntiCommutingG5->True.

Exercise 5. Compute the traces of products of up to four Dirac matrices with and
without an additional factor of γ5 at the end. If free Lorentz indices are assumed to be
upstairs, which sign convention does HEPMath use for the Levi-Civita tensor?

Complex conjugation is represented in HEPMath by the CC symbol. Unlike Mathe-
matica’s built-in Conjugate function, CC distributes itself automatically over sums and
products. It is also smart enough to interact correctly with various HEP-specific con-
structs like SDot, DiracTr etc. To tell HEPMath that a certain symbol is real you can
use the DeclareReal function. As with DeclareLorentzVectors you can pass pat-
terns to DeclareReal to declare all expressions matching the pattern as real. Lorentz
vectors declared with DeclareLorentzVectors are automatically declared as real, too.
To declare a complex Lorentz vector you can use the DeclareComplexLorentzVectors
function.

Exercise 6. Declare real Lorentz vectors p and k, a complex Lorentz vector e, and a
real variable m. Apply CC to the following expressions:

6



• (m e + c p)[mu]

• SDot[m p + c k, e]

• DiracTr[(Gs[p] + m GI).Gs[e].PL.Gs[k]]

• (ColorT[a].ColorT[b].ColorT[c])[i,j]

Now that you’re familiar with the most important building blocks for expressions in
HEPMath it is time to learn how to manipulate such expressions. The most common
exercise is to expand an expression, either completely or with respect to a certain set
of variables. HEPMath gives you the function HEPExpand to do this. It works similar
to Mathematica’s Expand function but is aware of things like the linearity of SDot
or DiracTr. If you pass a pattern as second argument to HEPExpand it will leave all
sub-expressions alone which are free of this pattern.

Exercise 7. Declare Lorentz vectors p, q, k, and l. Use HEPExpand to expand the
following expressions:

• (a (p + q) + b (k + l))[mu]

• SDot[a (p + q), b (k + l)] + Sqr[c (p + k)]

• DiracTr[(Gs[p] + m GI).Ga[mu].PL.Gs[k]]

• EpsDot[p+q, k+l, p-l, k+q]1

Now use the optional second argument of HEPExpand to expand the same expressions
only with respect to p.

Another recurring problem is to write a polynomial expression as a power series in
a given variable and extract specific coefficients. For tensor expressions things get a
bit more involved since you can do more with a tensor than raising it to some power.
Typically you want to split an expression into a minimal set of structures which contain
certain tensors and coefficients which multiply these structures and do not contain the
tensors. In this case the HEPCollect function is your friend. Its second argument is a
pattern which specifies the tensor(s) to be collected.

Exercise 8. Declare Lorentz vectors p, k, and q. Collect the following expression with
respect to p:

a p[mu] (k[mu] + Eta[mu, nu] p[nu]) + b p[nu] q[nu] +
SDot[c p + d p + q, k]

1In this example most terms after the expansion actually vanish due to the anti-symmetry of the
Levi-Civita tensor. You can get rid of them with the SortEps function.

7



Note that the index nu is automatically re-named to minimise the number of struc-
tures. However, index-free notations like SDot are not broken up.

Instead of re-arranging the expression you sometimes just want a list of the structures
and the corresponding coefficients (e.g. for applying a certain operation only on the
structures or only on the coefficients). You can use the HEPCollectListed function for
this purpose. It has the same syntax as HEPCollect and returns a pair of lists, the first
holding the structures and the second the corresponding coefficients. A common use-
case for HEPCollectListed is to extract the color structures of a Feynman amplitude
and obtain the color matrix.

Exercise 9. Consider the following expression:

A = a1 ColorDelta[i, j] ColorDelta[r, s] +
a2 ColorDelta[i, s] ColorDelta[r, j] +
a3 ColorT[a, i, j] ColorT[a, r, s]

Use ColorReduce to reduce the colour structures to a minimal set. The result is of
the form ∑

nc
(n)s

(n)
ijrs where s(n) are the colour structures and c(n) the coefficients. Use

HEPCollectListed to extract the s(n) and c(n). The colour matrix is

Cnn′ = s
(n)
ijrss

(n′)∗
ijrs

and has numerical coefficients. Use Mathematica’s Outer function together with other
HEPMath functions to find the matrix C.

3 Symbolics: Hgg in the Infinite Top Mass Limit

Now that you are familiar with the basics of HEPMath let’s do a practical example. In
this section we compute the H → gg partial width at leading order in the infinite top
mass limit. In the literature (e.g. [8]) this is typically done by computing the amplitude
with the full top mass dependence and then expanding in mH/mt. However, if we are
only interested in the leading term there is an easier way.

Consider the process

H → g(p1, σ1, a)g(p2, σ2, b) , (1)

where p1 and p2 are the momenta of the gluons, σ1 and σ2 their helicities and a and b
their (adjoint) colour indices. LetM be the matrix element for the process and define
the truncated amplitude Aµνab(p1, p2) by

M = Aµνab(p1, p2)ε∗
µ(p1, σ1)ε∗

ν(p2, σ2) , (2)

8



where ε(pi, σi) are the gluon polarisation vectors. Lorentz and gauge invariance together
with the QCD Ward identities force the truncated amplitude to be of the form

Aµνab(p1, p2) = C(p1, p2)(p1p2g
µν − pν1p

µ
2)δab , (3)

where C is some Lorentz-invariant function of the gluon momenta. As mentioned above
the infinite top mass limit is an expansion in mH/mt. We could therefore equally well
speak of the “vanishing Higgs mass” limit. The Higgs mass enters the amplitude only
through the external momenta which satisfy

p2
1 = p2

2 = 0 , p1p2 = m2
H

2 . (4)

The infinite top mass limit is therefore obtained by evaluating C for p1 = p2 = 0.

The SM Feynman rules give us the truncated amplitude as an integral over a loop
momentum l.

Aµνab(p1, p2) =
∫
dDlF µνab(l, p1, p2) , (5)

where D is the number of space-time dimensions. Computing the integral becomes a
lot easier if we can set p1 = p2 = 0 before the integration. However, evaluating the
truncated amplitude at zero momenta will just give zero, as can be seen from (3). We
therefore take derivatives with respect to p1 and p2 first:

∂

∂p1ρ

∂

∂p2σ
Aµνab(p1, p2) = C(p1, p2)(gρσgµν − gνρgµσ) + . . . , (6)

where the dots stand for terms where at least one of the derivatives acts on the function
C and which vanish for p1 = p2 = 0. Contracting µ with ν, ρ with σ, and a with b gives

C ≡ C(0, 0) = 1
8D(D − 1)

∂Aµ aa
µ (p1, p2)
∂p1ρ∂p

ρ
2

∣∣∣∣∣
p1=p2=0

= 1
8D(D − 1)

∫
dDl

∂F µ aa
µ (l, p1, p2)
∂p1ρ∂p

ρ
2

∣∣∣∣∣
p1=p2=0

. (7)

Let’s see if we can implement this computation method with HEPMath. As always,
the first step is to generate the amplitude by drawing the Feynman diagrams and in-
serting the Feynman rules. For H → gg this can easily be done by hand, but most
of the time you will want to do this step with FeynArts. Since this tutorial is about
HEPMath and not FeynArts let’s fast-forward over this bit. The file symbolics.m in
the templates folder generates the H → gg amplitude with FeynArts. There are two
things to observe when using FeynArts together with HEPMath:

1. to load FeynArts you must load the context HEPMath‘FeynArts‘, not FeynArts‘
and

9



2. you must initialise the model with InitializeModel before using any symbols
defined in the model file.

Otherwise everything works as explained in the FeynArts documentation.

After substituting the Feynman rules with the CreateFeynAmp function from
the FeynArts package you can convert the result into HEPMath notation with the
ConvertFeynAmp function. It returns a pair {cfg, amp} of expressions. amp is the
actual amplitude and cfg is a list of rules holding information about the masses and
indices of the external particles. You can manipulate amp directly with the functions
discussed in Sec. 2, but I usually prefer to shorten the rather bulky FeynArts notations
a bit. Both the conversion and the shortening of notations have already been done in
symbolics.m.

Exercise 10. Take a look at the last few lines of symbolics.m. Run the script and
inspect the value of the amp variable. Does the amplitude look correct? What do the
symbols p, l, a, i, mu, and Den represent? How are the polarisation vectors ε and
the gluon helicities σi represented? Now compute the truncated amplitude with the
following steps:

(a) Simplify the coupling factors by expressing the amplitude in terms of αs = g2
s/(4π)

and v = 2MW sW/e.

(b) Truncate the amplitude by removing the polarisation vectors.

(c) Use momentum conservation to eliminate the momentum of the incoming Higgs
boson.

(d) Simplify the colour structures. How many different colour structures do you get?

(e) Compute the Dirac traces and simplify.

Next we have to take the partial derivatives with respect to the momenta p1 and p2
and evaluate at p1 = p2 = 0. In HEPMath derivatives with respect to a tensor variable
can be computed with the HEPD function. The syntax is similar to Mathematica’s D
function and rather intuitive.

HEPD[expr, p[mu]]

returns the derivative of expression expr with respect to the Lorentz vector p[mu]. The
index mu of the derivative must be different from any contracted index in expr . It can,
however, be the same as an external index of expr , in which case the derivative index
is contracted with the external index of expr . Higher derivatives can be computed by
simply adding arguments to HEPD

10



HEPD[expr, p[mu], k[nu], ...]

Exercise 11. Familiarise yourself with the HEPD function by trying a few simple exam-
ples. Then calculate the derivative of the (integrand of) the truncated amplitude with
respect to p1 and p2 and contract the indices as in (7). Finally set the momenta p1 and
p2 to zero. Take a look at the result. Do you notice anything strange?

Setting tensors to zero in HEPMath has a somewhat annoying subtlety. Index-free
notations like SDot[p, k] behave in the correct way if one of the arguments is zero, so
you can simply make the replacement p -> 0. However, the equivalent expression p[mu]
k[mu] turns into the somewhat odd-looking expression 0[mu] k[mu]. Unfortunately
there is no way to tell Mathematica that 0 applied to anything should be replaced by
zero. Thus you have to do this manually, e.g. with

p[mu] k[mu] /. p -> 0 /. 0[__] -> 0

Alternatively you can use the HEPSetZero function:

HEPSetZero[p[mu] k[mu] + k[mu] k[mu], p]
⇒ k[mu] k[mu]

You should now have a sensible-looking expression for the integrand in (7). So, let’s
try to perform the integration over the loop momentum. The integrals required for this
simple example can obviously be found in any textbook, but you can also use HEPMath
to calculate them from scratch. To do this you first have to express the amplitude in
terms of scalar integrals, i.e. you need to cancel any appearences of loop momenta in
the numerator against the propagator denominators. The DenCancel function can help
you with that. It will cancel any squared momenta in the numerator against propagator
denominators with the same momentum. However, it can not (yet) eliminate scalar
products between loop and external momenta or between different loop momenta from
the numerator. In this example we only have one loop momentum and have set all
external momenta to zero, so DenCancel is sufficient for our purposes.

When you have an expression where the loop momenta only appear in propagator
denominators (Den expressions) you can use the function FeynmanIntegrate to trade
the loop integrals for integrals over Feynman parameters. The function works for an
arbitrary number of loops. The syntax is

FeynmanIntegrate[expr, {l1, ..., lL}, x, muR, del]

where expr is the integrand expression, {l1, ..., lL} is the list of loop momenta, muR
is the renormalisation scale, and del is the symbol used for the infinitesimal imaginary
part of the propagators. The argument x is the head used to generate the Feynman

11



parameters x[1], x[2], etc. You can omit the del argument, in which case it is set to
zero. FeynmanIntegrate computes the integral

(2πmuR )L(4−Dim)
∫
dDiml1 · · ·

∫
dDimlL expr ,

where L is the number of loop momenta. The resulting Feynnman integrals are of the
form

G(D)
∫ 1

0
dx1 · · ·

∫ 1

0
dxnδ(1− x1 − . . .− xn)M(x)F(x)α(D)U(x)β(D) , (8)

where G(D) is a pre-factor involving Gamma functions and the space-time dimension
D(≡ Dim), M(x) is a monomial in the Feynman parameters xi originating from de-
nominators raised to some power, F(x) and U(x) are polynomials in the xi and α(D)
and β(D) are powers depending on D. In HEPMath these integrals are represented by
FeynmanIntegral expressions, which have the following form:

FeynmanIntegral[{G(D), M(x), F(x)α(D), U(x)β(D)},
{x1, ..., xn}]

The first thing you usually want to do with these integrals is integrate out the delta
function by eliminating one Feynman parameter. (Since you may want to have a say
in which Feynman parameter gets eliminated HEPMath doesn’t do this automatically.)
This can be done with the EliminateFeynmanParameter function:

EliminateFeynmanParameter[f, x[i]]

integrates the delta function by eliminating the i -th Feynman parameter. If you drop
the second argument the parameter is chosen automatically. The argument f must be
a FeynmanIntegral expression, so you’ll typically use a replacement rule like

expr = expr /. f_FeynmanIntegral :> EliminateFeynmanParameter[f]

The expressions returned by EliminateFeynmanParameter still contain integrals over
the remaining Feynman parameters. These integrals are represented by HEPIntegral
expressions. HEPIntegral has the same syntax as Mathematica’s Integrate function,
but it does not attempt to compute the integrals. It is just a container for interme-
diate expressions which you will need to manipulate further to compute the integrals.
However, you can expand HEPIntegral expressions with HEPExpand.

Exercise 12. Experiment with the DenCancel, FeynmanIntegral, and
EliminateFeynmanParameter functions. Compute the scalar one-loop two-point
integral for vanishing internal masses. Use the LoopTools interface to check your result
numerically for different choices of the renormalisation scale muR and squared external
momentum psq :

12



Needs["HEPMath‘LoopTools‘"];
PaVe[2, muR, 0][0][psq, 0, 0]

Let’s go back to the H → gg amplitude. Here we actually only have one type of
denominator: 1/(l2 − m2

t ). The Feynman integrals generated by FeynmanIntegrate
therefore only have one Feynman parameter which is fixed by the delta function. Thus,
acting with EliminateFeynmanParameter on these integrals already gives the complete
result and not a HEPIntegral expression.

Exercise 13. Compute the coefficient C from (7) by performing the loop integration in
your expression from Exercise 11. Then use Mathematica’s Series function to expand
your result around Dim = 4. Show that C = αs/(3πv). (You will also need Mathemat-
ica’s Normal function to turn the result of Series into an ordinary expression.)

By virtue of Equation (3) the coefficient C fully determines the truncated amplitude.
However, to calculated the H → gg partial width we need the squared matrix element

|M|2 =
∑

a,b,σ1,σ2

|Aµνab(p1, p2)ε∗
µ(p1, σ1)ε∗

ν(p2, σ2)|2 . (9)

The sum over the gluon polarisations σ1 and σ2 can be done with the formula
∑
σ

εµ(p, σ)ε∗
ν(p, σ) = −gµν −

n2pµpν
(n· p)2 + nµpν + nνpµ

n· p
, (10)

where n is a gauge vector which satisfies n· ε(p, s) = 0 and n· p 6= 0. For gauge
invariant quantities the second and third term in (10) do not contribute and one can
use the simpler formula ∑

σ

εµ(p, σ)ε∗
ν(p, σ) = −gµν . (11)

In HEPMath the formulae above can be applied to arbitrary expressions with the
VectorPolarizationSums function. The syntax is

VectorPolarizationSums[expr, {p1 -> n1, p2 -> n2, ...}]

where p1, p2 etc. are momenta of external gauge bosons and n1, n2 etc. are the associ-
ated gauge vectors. Note that they must be Lorentz vectors, i.e. have tensor signature
{Lorentz}. You can also specify zero as gauge vector, in which case the simplified polari-
sation sum (11) will be applied. The polarisation vectors must be represented in expr by
Pol[p1], Pol[p2] etc. These are tensors with tensor signature {VectorPolarization,
Lorentz}, and their polarisation indices must be contracted accordingly.

Exercise 14. Use VectorPolarizationSums to compute the squared matrix element
(9) for the H → gg process. (For squaring the amplitude you will also need the
HEPMultiply and CC functions.) Verify the gauge invariance of the expression by using
0 and p[1]+p[2] as gauge vector for the external gluons.

13



The general expression for the partial width for the decay of a particle with mass M
into particles with masses m1 and m2 is

Γ = S

√
λ(M2,m2

1,m
2
2)

16πM3 |M|2 , (12)

where S = 1
2 for identical final state particles and S = 1 otherwise. The kinetic function

λ is defined as
λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx) (13)

and implemented in HEPMath as KineticLambda.

Exercise 15. Show that the partial width for the H → gg decay in the infinite top
mass limit is

Γ(H → gg) = α2
sm

3
H

72π3v2 . (14)

4 Numerics: Hgg with Full Mass Dependence

In the last section we explored the analytic capabilities of HEPMath. Typical ap-
plications of the functions and algorithms presented in the last section are matching
calculations in effective field theories (at one loop or beyond), where analytical results
are required and only one or two masses are involved. At the one-loop level, and in
cases where ultimately only numerical results are important the presence of many dif-
ferent masses is actually not a big problem. Well-established libraries like LoopTools
can provide numerical results for the relevant integrals, and the only analytic task con-
sists in expressing the amplitude in terms of the integrals implemented in LoopTools. In
this section we will use HEPMath together with LoopTools and LHAPDF to compute
the gg → H production cross section at leading order with full top and bottom mass
dependence.

As in the last section, we will fast-forward over the process of generating the dia-
grams with FeynArts and inserting the Feynman rules. The file numerics1.m in the
templates folder generates the gg → H amplitude for you, which now also includes
the bottom loop contribution. It substitutes some shorthand notations for external mo-
menta, polarisation vectors, and indices. It also multiplies the top loop contribution
with ct and the bottom loop contribution with cb. You can later set these symbols to
zero or one to extract only specific contributions. It then converts the amplitude into
HEPMath notation and stores it in the variable amp.

Exercise 16. Simplify the amplitude amp as follows:

(a) Use momentum conservation to eliminate the Higgs momentum.

(b) Simplify the colour structures. How many structures do you get?

14



(c) Compute the Dirac traces.

(d) Work out the scalar products between all possible combinations of external gluon
momenta and polarisation vectors. Then write a function kinSimplify which
expands an expression in these momenta and then substitutes the correct values
for the scalar products. Apply this function to the amplitude.

Now we are ready to express the amplitude in terms of Passarino Veltman functions.
Let me first sketch the basic idea. The one-loop integrals we encounter are all of the
following form:

T µν···(k1, k2, . . .) = (2πµ)4−D

iπ2

∫
dDl

lµlν · · ·
(l2 −m2

0)((l + k1)2 −m2
1) · · · , (15)

where k1, k2 etc are some linear combinations of external momenta. By Lorentz in-
variance the result must be a symmetric tensor composed of the momenta ki and the
metric tensor g. For each integral there is only a finite number of tensor structures. For
example, for the two-point tensor integral Bµν we get

Bµν(k1) = (2πµ)4−D

iπ2

∫
dDl

lµlν

(l2 −m2
0)((l + k1)2 −m2

1) = B00g
µν +B11k

µ
1k

ν
1 . (16)

The coefficients are called Passarino Veltman functions. They must be Lorentz scalars
and can only depend on scalar products of the momenta ki (in this case only k2

1).
LoopTools provides the tensor coefficients B00, B11 etc., so the only analytic task is to
expand the tensor integrals in terms of the Passarino Veltman functions provided by
LoopTools.

The decomposition into tensor integrals can be done in HEPMath with the
PaVeIntegrate function. The syntax is

PaVeIntegrate[expr, l, muR]

where expr is the expression to be integrated, l is the loop momentum, and muR the
renormalisation scale. PaVeIntegrate computes the integral

(2πmuR )4−Dim
∫
dDiml expr .

The Passarino Veltman functions are represented by PaVe expressions of the following
form:

PaVe[n,muR,epow][ind1,...,indm][arg1,...,argk]

15



where n is the number of external legs, muR the renormalisation scale, ind1 to indm the
indices identifying the tensor integral, and arg1 to argk the arguments to the integral
function. The exact meaning of the indices and arguments is identical to the LoopTools
package an can be found in the LoopTools documentation. If some of the propagator
masses in a loop integral vanish the result can be infrared divergent. In dimensional
regularisation this divergence manifests as poles in the regulator ε = (4−D)/2. There
can be 1/ε and 1/ε2 poles, and the coefficients of these poles can be obtained by setting
epow to 1 or 2, respectively. For epow = 0 you obtain the finite part. By default
PaVeIntegrate only returns the IR finite part of the integral, i.e. it sets epow to zero
in all PaVe expressions. You can change this behaviour with the IRDivergentParts
option. The ultraviolet divergence is represented by the symbol Div:

PaVeIntegrate[Den[l, m0] Den[l+p, m1]/(I Pi^2), l, muR]
⇒ Div + PaVe[2, muR, 0][0][Sqr[p], m0^2, m1^2]

so Div is equivalent to
Div = 2

4− Dim
− γE + ln(4π)

where γE is the Euler constant.

Exercise 17. Use PaVeIntegrate to express the gg → H amplitude in terms of Pas-
sarino Veltman functions. Use your kinSimplify function from the last excercise to
simplify the expression. Also apply kinSimplify to the arguments of the Passarino
Veltman functions. Verfiy that the amplitude is UV finite.

If you load the LoopTools interface with

Needs["HEPMath‘LoopTools‘"]

the PaVe expressions will automatically evaluate to numbers when all arguments are
numbers. Using the methods discussed in Sec. 3 you could now easily square the ampli-
tude and evaluate it numerically. However, for more complicated processes squaring the
amplitude analytically (as done in Sec. 3) can actually lead to an unnecessary prolifera-
tion of terms. Sometimes it is better to compute the amplitude numerically for explicit
choices of external helicities (and possibly colour indices), then square the result and
perform the sum over helicities (and colours) numerically. In this section we will use
a “hybrid” scheme where the sum over colours is done analytically but the sum over
helicities numerically. Let Aab(k1, k2, ε1, ε2) denote the gg → H amplitude, where a and
b are the colour indices of the external gluons, k1 and k2 their momenta and ε1 and ε2
their polarisation vectors. Separate the colour structure by writing

Aab(k1, k2, ε1, ε2) = A(k1, k2, ε1, ε2)δab

= [At(k1, k2, ε1, ε2) +Ab(k1, k2, ε1, ε2)]δab , (17)

16



where we separated the top and bottom loop contribution in the last step. The squared
and colour summed amplitude is then

|Aab|2 = 8|A|2 = 8(|At|2 + |Ab|2 + 2 Re[A∗
tAb]) . (18)

Exercise 18. Determine At(k1, k2, ε1, ε2) and Ab(k1, k2, ε1, ε2). You can do this by con-
tracting the colour indices or by using HEPCollectListed. Store them in the variables
campT and campB.

The partonic cross section is given by

σ̂(ŝ) = 1
4 · 1

64 · 1
2ŝ

∑
ε1,ε2

∫
d4p |Aab|2δ4(p− k1 − k2)θ(p0)

= 1
4 · 1

64 · π

m2
H

∑
ε1,ε2

|Aab|2δ(ŝ−m2
H) ≡ Ĉδ(ŝ−m2

H) , (19)

where ŝ = (k1 +k2)2 is the squared partonic centre of mass energy and the sum runs over
all physical polarisations of the external gluons. The factors 1/4 and 1/64 come from
the spin and colour average, respectively. Separating the top, bottom, and top-bottom
interference contributions to Ĉ we write

Ĉ = Ĉt + Ĉtb + Ĉb . (20)

We will now write a Mathematica function that evaluates Ĉ as a function of αs, mH ,
mt, and mb numerically, i.e. by assigning expicit components to the gluon momenta and
polarisation vectors and summing over polarisations by means of a Do loop. This can
be accomplished with the HEPCompile function. It is similar to Mathematica’s Compile
function in the sense that it takes a Mathematica expression and converts it into byte
code which is better suited for fast numerical evaluation (but less pretty to look at).
The result of HEPCompile is a HEPCompiledFunction expression which, when called
with numerical arguments, will execute the compiled code and return the result. The
syntax is

HEPCompile[args, body]

where args is a list specifying the names and types of the function arguments and has
the same structure as the first argument of Mathematica’s Compile function. The second
argument body contains the function body. It can consist of a subset of compilable
Mathematica functions. This set includes common functions like Sin, ArcTan etc.,
matrix and vector multiplications via Dot (‘.’), If statements and Do loops, and Block
statements (for creating local variables). It also supports some functions defined by
HEPMath, namely KineticLambda, Pol, MPol, TwoBodyDecay, LHAPDF, LHAPDFOpenID,
and LHAPDFClose. The first thing you need to understand about HEPCompile is that

17



(like Mathematica’s Compile) it does not evaluate its body argument. Thus, if you
have a variable like campT in your Mathematica session and you put it in the body of
a HEPCompile command it will not automatically get replaced by its value. Instead,
it will essentially stop the compilation from happening.2 To insert the value of campT
in a HEPCompile function body you have to explicitely inject it. There are two special
functions in HEPMath which let you inject expressions into HEPCompile bodies. The
first, HEPEvaluate, simply inserts the evaluation of its argument in the function body.
(More precisely, HEPCompile looks for appearences of HEPEvaluate in its body and
substitutes the evaluations before trying to compile.) The other, HEPPrepare, works in
a similar way but implements some special treatment for PaVe expressions and Lorentz
vectors contracted with SDot or Sqr. The reason is the following: in HEPMath Lorentz
vectors are always symbols or symbolic expressions. But when you do numerics you
probably want to specify the components of your Lorentz vectors explicitely in some
frame. Inside a HEPCompile body you can do this by simply assigning lists of four
numbers to your Lorentz vectors (the first number being the time component). To
then evaluate scalar products of Lorentz vectors correctly expressions involving SDot or
Sqr need some re-writing, and that’s what HEPPrepare does. In addition it optimises
expressions containing PaVe calls so that each integral is only calculated once.

Exercise 19. Make sure that the renormalisation scale is called muR in your current
script (or notebook) and that the colour amplitudes At and Ab are stored in variables
campT and campB, respectively. Now paste the contents of the file numerics2.m at the
end of your script. Take a look at the code, read the comments and fill in the blanks
marked with “TODO”. This should give you a compiled function chat whose argument
list is (αs,mH ,mt,mb) and which returns a list of three numbers corresponding to Ĉt,
Ĉtb, and Ĉb (in that order). Test the function.

The final step is to fold the partonic cross section with the parton distribution
functions. The general formula is

σ(s) =
∫ 1

0
dx1

∫ 1

0
dx2 f1(x1)f2(x2)σ̂(x1x2s)θ(x1x2s− s0) (21)

where f1 and f2 are the parton density functions of the two incoming partons, σ̂ is the
partonic cross section, s the squared hadronic centre of mass energy, and s0 the squared
threshold energy. With HEPMath’s LHAPDF interface you can do this convolution
directly in Mathematica. To load the interface you call

Needs["HEPMath‘LHAPDF‘"]

To initialise a certain PDF set call
2You will still get some sort of byte code which you can execute, but you’ll probably loose all the

performance benefits and you won’t be able to export the compiled function to Python, as discussed
later.

18



pdfid = LHAPDFOpen[collection, set]

where collection is a string identifying the desired collection of PDFs and set is
an integer identifying the desired PDF set. Every PDF set in LHAPDF is uniqely
identified by an integer called PDF ID. LHAPDFOpen returns the PDF ID and you will
need this value to evaluate the PDFs. In this tutorial we will use the CTEQ6L1 set, so
our collection is "cteq6l1" and set is 0. If you already know the PDF ID of the
set you want you can also initialise it with

LHAPDFOpenID[pdfid]

(Due to some difficulties with handling strings in compiled functions you should always
use LHAPDFOpenID inside HEPCompile bodies.) Once your favourite PDF set is initialised
you can evaluate PDFs with

LHAPDF[pdfid, pid, x, Q]

where pdfid is the PDF ID of the pdf set, pid is the PDG code of the parton you
want, x is the momentum fraction and Q the factorisation scale. You can close a PDF
set with

LHAPDFClose[pdfid]

The values returned by LHAPDF are not the functions fi from (21) but functions φi
defined by

φi(xi) = xifi(xi) (22)
Expressing (21) in terms of the φi, changing variables to ρ = ln(x1x2) and λ = ln(x1)
and integrating out the theta function gives

σ(s) =
∫ 0

ln(s0/s)
dρ
∫ 0

ρ
dλφ1(eλ)φ2(eρ−λ)σ̂(eρs) . (23)

Using (19) and integrating out the delta function gives

σ(s) =
∫ 0

ln(m2
H/s)

dλφ1(eλ)φ2(e−λm2
H/s)

Ĉ

m2
H

. (24)

We can now implement the integrand in (24) as a compiled function in Mathematica
and integrate it with Mathematica’s NIntegrate function.

Exercise 20. To compute the hadronic cross section paste the contents of numerics3.m
at the end of your script (or notebook). Read the comments and make sure you under-
stand what is happening. Fill in the blanks marked with “TODO”.

19



For more complicated processes the hadronic cross section is a multi-dimensional
integral over several variables related to the momenta of the final state particles. Such
an integration can be time consuming and you may want to parallelise it and run it on a
cluster. If your institute only has a limited number of Mathematica licenses you cannot
do the integration in Mathematica. Fortunately, HEPMath allows you to “export” any
function you compiled with HEPCompile to Python. Exporting a function to Python
proceeds in two steps. First you convert the byte code of your compiled functions into
native C code using the HEPCodeGenerate function. Then you compile the generated
code into a Pyhton extension module. Sounds horribly complicated, but it is actually
very easy.

Exercise 21. Paste the contents of numerics4.m at the end of your script. Read the
comments and make sure you understand what is happening. Execute the script. Go
into the build directory, open a Python session and test the generated Pyhton module.

References
[1] J. Vermaseren, arXiv:math-ph/0010025 [math-ph].

[2] M. Jamin and M. E. Lautenbacher, Comput.Phys.Commun. 74 (1993) no. 2, 265 –
288.

[3] T. Hahn and M. Perez-Victoria, Comput.Phys.Commun. 118 (1999) 153–165,
arXiv:hep-ph/9807565 [hep-ph].

[4] R. Mertig, M. Böhm, and A. Denner, Comput.Phys.Commun. 64 (1991) no. 3, 345
– 359.

[5] M. Wiebusch, arXiv:1412.6102 [hep-ph].

[6] T. Hahn, Comput.Phys.Commun. 140 (2001) 418–431, arXiv:hep-ph/0012260
[hep-ph].

[7] LHAPDF, http://lhapdf.hepforge.org.

[8] M. Spira, A. Djouadi, D. Graudenz, and P. Zerwas, Nucl.Phys. B453 (1995)
17–82, arXiv:hep-ph/9504378 [hep-ph].

20

http://arxiv.org/abs/math-ph/0010025
http://dx.doi.org/http://dx.doi.org/10.1016/0010-4655(93)90097-V
http://dx.doi.org/http://dx.doi.org/10.1016/0010-4655(93)90097-V
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/hep-ph/9807565
http://dx.doi.org/http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://arxiv.org/abs/1412.6102
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://arxiv.org/abs/hep-ph/0012260
http://lhapdf.hepforge.org
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://arxiv.org/abs/hep-ph/9504378

	Introduction
	Basics: Tensors, Indices, and Contractions
	Symbolics: Hgg in the Infinite Top Mass Limit
	Numerics: Hgg with Full Mass Dependence

